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1. Introduction

During the last decade there has been a rapid development in efficient stochastic Galerkin
approximation methods for solving partial differential equations (PDEs) with random pa-
rameters. The efficiency of Galerkin methods relies on properly choosing basis functions
of finite dimensional projection spaces. There are two projection spaces involved herein:
the stochastic approximation space and the physical approximation space. In the litera-
ture, a popular choice for the stochastic approximation is generalized polynomial chaos
(gPC) [18,37,39], which is a stochastic spectral method.

Typical choices for the physical approximation are finite element methods [4,13], spec-
tral methods [8, 32] and spectral element methods [30]. When the solution is sufficiently
regular, spectral methods have exponential convergence rates. However, if the solution is
not smooth, the rates of spectral methods deteriorate. To result in an efficient approxima-
tion in general case, adaptive versions of spectral methods are actively developed.

To resolve discontinuities of solutions with respect to the random parameters, the multi-
element generalized polynomial chaos method is first developed [36]. After that, a model
reduction based mesh refinement method for stochastic approximations is proposed [28,
29]. For an overall adaptive procedure, adaptive stochastic Galerkin finite element meth-
ods are developed in [10], where the gPC degree and dimension adaption and the finite
element mesh refinement for the physical domain are conducted based on a residual-based
a posteriori error estimator. For efficient adaptive procedures, effective local problem based
error estimators for stochastic Galerkin finite elements are developed in [2,3].

As spectral methods are expected to have higher order accuracy than low order finite
element methods, in this work, we develop a new adaptive hybrid spectral method as an al-
ternative to the adaptive stochastic Galerkin finite elements. In this hybrid spectral method,
the stochastic domain is discretized by gPC and the physical domain is discretized by the
spectral element method, which gives flexibility to conduct local refinements. Since gPC
and the (physical) spectral element are both spectral methods, they are both expected to
have high order convergence rates. The novelty of this work lies on new effective error
indicators and adaptive strategies for both gPC degree adaption and spectral element re-
finement.

To illustrate the framework and the efficiency of our new approach, the stochastic
Helmholtz equations are studied as a benchmark problem, which plays an important role in
ocean acoustics, optics and electromagnetics [21,24,42]. The random sources of Helmholtz
problems typically arise from lack of knowledge or measurement of material refractive in-
dices or wave number parameters. This paper is organized as follows. In Section 2, the
detailed setting of stochastic Helmholtz equations is introduced, and the frameworks of
stochastic Galerkin methods and gPC are discussed. We also discuss the spectral element
methods for physical approximations in Section 2. Our main adaptive hybrid spectral meth-
ods for both stochastic and physical approximations are presented in Section 3. Numerical
results are discussed in Section 4. Section 5 concludes the paper.
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2. Problem setting and generalized polynomial chaos (gPC)

This section describes the mathematical setting of stochastic Helmholtz equations, its
variational formulation, and gPC approximations in the stochastic space.

2.1. Problem setting

Let D ⊂ R2 be a physical domain which is open, bounded, connected and with a
polygonal boundary ∂ D, and x = [x1, x2]T ∈ R2 denote a physical variable. Let ξ =
[ξ1, . . . ,ξn]T be a random vector, in which the random variables ξ1, . . . ,ξn are indepen-
dently distributed on the intervals Γ1, . . . , Γn. The probability density functions of ξ1, . . . ,ξn
are π1(ξ1), . . . ,πn(ξn) respectively. It is clear that the image and the probability density
function of ξ are Γ = Γ1 × · · · × Γn and π(ξ) = π1(ξ1) · · ·πn(ξn).

In this paper, we consider the transverse electric (TE) polarization for uncertainty in ma-
terials, i.e., the following stochastic Helmholtz problem: find the unknown function u(x,ξ)
satisfying

−∇2u(x,ξ)− κ2(x,ξ)u(x,ξ) = f (x), ∀(x,ξ) ∈ D× Γ , (2.1)

u(x,ξ) = 0, ∀(x,ξ) ∈ ∂ DD × Γ , (2.2)

∂ u
∂n
− iκ(x,ξ)u= 0, ∀(x,ξ) ∈ ∂ DR× Γ , (2.3)

where κ(x,ξ) takes values in R; i =
p
−1, ∂ u/∂n is the outward normal derivative of u,

and ∂ D = ∂ DD ∪ ∂ DR is the boundary of D. As the Karhunen-Loève (KL) expansion is
widely used to parameterize random fields [11, 18], we assume κ(x,ξ) in (2.1) has the
same form as the standard KL expansion, i.e.,

κ(x,ξ) =
n
∑

m=0

κm(x)ξm,

where {κm(x)}nm=0 are real-valued deterministic functions, and we set ξ0 = 1 for conve-
nience.

To ensure the well-posedness of this problem, we assume that there is a constant ε > 0
such that κ(x,ξ)> ε for all (x,ξ) ∈ D×Γ , and the eigenvalues associated with deterministic
versions of (2.1) are greater than ε in magnitude. Thus for each realization of ξ we consider
the following deterministic Helmholtz eigenvalue problem — cf. [16,22,23]:

−∇2u(x,ξ)−κ2(x,ξ)u(x,ξ) = λ(ξ)u(x,ξ) (2.4)

with the boundary conditions (2.2)–(2.3). We define a set Λξ consisting of all eigenvalues
of (2.4) for each realization of ξ, and assume that |λ|> ε for all λ ∈ ∪ξ∈ΓΛξ.
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2.2. The variational formulation

To introduce the variational form of (2.1)–(2.3), some notation are required. Letting
g(ξ) be a function of the random vector ξ, which maps Γ to C, its expectation (mean value)
is defined by

E [g(ξ)] :=

∫

Γ

π(ξ)g(ξ)dξ,

where π(ξ) is the probability density function of ξ. Next, the Hilbert spaces L2(D) and
L2
π(Γ ) are defined as

L2(D) :=

�

v(x) : D→ R
�

�

�

�

∫

D
v̄v dx<∞

�

,

L2
π(Γ ) :=

�

g(ξ) : Γ → R
�

�

�

�

∫

Γ

π(ξ) ḡ g dξ <∞
�

,

which are equipped with the inner products

(v̂(x), v(x))L2(D) :=

∫

D
v̄(x)v̂(x)dx,

( ĝ(ξ), g(ξ))L2
π(Γ )

:=

∫

Γ

π(ξ) ḡ(ξ) ĝ(ξ)dξ.

Following Babuška [1], we define the tensor space of L2(D) and L2
π(Γ ) as

L2(D)⊗ L2
π(Γ )

:=

¨

w(x,ξ)

�

�

�

�

w(x,ξ) =
n
∑

i=1

vi(x)gi(ξ), vi(x) ∈ L2(D), gi(ξ) ∈ L2
π(Γ ), n ∈ N+

«

,

which is equipped with the tensor inner product

(ŵ(x,ξ), w(x,ξ))L2(D)⊗L2
π(Γ )
= E

�∫

D
w̄(x,ξ)ŵ(x,ξ)dx

�

.

Following [15, 31, 39], the variational form of (2.1)–(2.3) can be written as: find u ∈
W := L2(D)⊗ L2

π(Γ ), such that

E

�

∫

D
∇u · ∇w̄−

∫

D
κ2uw̄− i

∫

∂ DR

κuw̄

�

= E
�∫

D
f w̄

�

, ∀w ∈W. (2.5)

Ihlenburg and Babuška [19,20] show that the variational problem associated with the de-
terministic Helmholtz equations has a unique solution and establish a priori error estimates
for the corresponding finite element methods. After that, Cao et al. [5] prove that the vari-
ational problem associated with Helmholtz equations with discretized white noise forcing
term has a unique solution and provide a priori error estimates for the corresponding finite
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element and discontinuous Galerkin methods. In this work, we focus on the situation that
there exist uncertainties in the coefficient κ.

Since the stochastic space L2
π(Γ ) and the physical space L2(D) are independent to each

other, we discretize the stochastic and physical spaces independently, i.e., choosing the
finite-dimensional subspaces of them respectively, and then take the tensor space of these
subspaces as the finite-dimensional subspace of W = L2(D)⊗ L2

π(Γ ). In general, let

Vphy = span{vi(x), i = 1, . . . , Nx}

and

Vstoch = span{Φ j(ξ), j = 1, . . . Nξ}

denote finite-dimensional subspaces of L2(D) and L2
π(Γ ). The tensor space of them, i.e.,

Vphy ⊗Vstoch = {vi(x)Φ j(ξ), i = 1, . . . , Nx, j = 1, . . . , Nξ}

is taken as the finite-dimensional subspace of W . Thus, we have

u(x,ξ)≈ uap(x,ξ) :=
Nξ
∑

j=1

Nx
∑

i=1

u ji vi(x)Φ j(ξ) . (2.6)

Substitute (2.6) to the variational form (2.5), we obtain the linear system

Au= b, (2.7)

where

A=G00 ⊗K −
n
∑

l=0

n
∑

m=0

Glm ⊗Mlm −
n
∑

l=0

iGl0 ⊗Ll ; (2.8)

b= h⊗ f . (2.9)

In (2.8)–(2.9), ⊗ denotes Kronecker tensor product and

h( j) = E
�

Φ j(ξ)
�

, f(s) =

∫

D
f vs dx,

Mlm(s, t) =

∫

D
κlκmvsvt dx, Ll(s, t) =

∫

∂ DR

κl vsvt ds,

Glm( j, k) = E
�

ξlξmΦ j(ξ)Φk(ξ)
�

, K(s, t) =

∫

D
∇vs · ∇vt dx,

where l, m= 0,1, . . . , n; j, k = 1, . . . , Nξ and s, t = 1, . . . , Nx.
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2.3. The generalized polynomial chaos expansion

There are two main kinds of bases for the stochastic space, i.e., the piecewise linear
functions and the global orthogonal polynomials. The former achieves a desired accuracy
through polynomial approximation with a fixed degree on an increasingly fine partition
of Γ [1,9]. The later one reduces the error via increasing the degrees of polynomial bases.
It includes polynomial chaos [17,18], generalized polynomial chaos [14,40] and dynami-
cally bi-orthogonal polynomials [6,7,27,44]. In this work, we use the generalised polyno-
mial chaos approximation in stochastic space. For completeness we review the generalized
polynomial chaos expansion following [37,38,40].

The generalized polynomial chaos (gPC) expansion is widely used to represent stochas-
tic processes. By gPC expansion, u(x,ξ) can be expressed as [41]

u(x,ξ) :=
∞
∑

|j|=0

uj(x)Φj(ξ), (2.10)

where j = ( j1, . . . , jn) is a multi-index with |j| = j1 + . . . + jn, {Φj(ξ)}∞|j|=0 consists of n-
variate | j|-th order orthogonal polynomials with respect to the inner product (·, ·)L2

π
, which

are named as the generalized polynomial chaos, and each uj(x) :=
∫

Γ
u(x,ξ)Φj(ξ)dξ is

a gPC coefficient function. The generalized polynomial chaos can be expressed by the
products of a sequence of univariate polynomials in each direction of ξ when ξ1, . . . ,ξn are
independent, i.e.,

Φj(ξ) = φ j1(ξ1) · · ·φ jn(ξn),

where ji (1≤ i ≤ n) are the degrees of the univariate polynomial φ ji (ξi), and {φ ji (ξi)} are
orthonormal polynomials with respect to πi(ξi), i.e.,

∫

Γi

π(ξi)φ ji (ξi)φki
(ξi)dξi = δ ji ,ki

. (2.11)

In (2.11), δ ji ,ki
is the Kronecker delta function and πi(ξi) is the probability density function

of ξi .
It follows immediately form (2.11) that

E
�

Φj(ξ)Φk(ξ)
�

=

∫

Γ

π(ξ)Φj(ξ)Φk(ξ) = δj,k, (2.12)

where δj,k = δ j1,k1
· · ·δ jn,kn

.
From (2.12), the mean and variance of u(x,ξ) are given by

E [u(x,ξ)] = u0(x), V [u(x,ξ)] =
∞
∑

|j|=1

u2
j(x).

Truncating the gPC expansion (2.10) up to degree q, we get a q-th order gPC approxi-
mation of u(x,ξ), i.e.,

u(x,ξ)≈
q
∑

|j|=0

uj(x)Φj(ξ).
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For the q-th order gPC approximation, the finite-dimension subspace of L2
π(Γ ) is

Vstoch :=P n
q (ξ) = span{Φj(ξ), |j| ≤ q},

and it is clear that {Φj(ξ)}|j|≤q is the basis of P n
q (ξ).

2.4. The spectral element method in physical space

For the spatial point of view, we use the spectral element method (SEM) to discretize
the physical domain [30]. Like the finite element methods, we first divide the physical
domain D into non-overlapping elements:

ND
⋃

m=1

D̄m = D̄, Dm

⋂

Dm = ;, for m 6= n,

where ND is the number of elements. Then the approximation space can be taken as

Vphy := V h
p = {v ∈ L2(D)

�

�

�v|Dm
∈ Pp(Dm)},

where Pp(Dm) denotes the polynomials in Dm with maximum degrees not greater than p.
In this paper, quadrilateral elements are used to divide the physical domain D.

It is known that each quadrilateral element Dm can be transformed to the reference
element (s, t) ∈ Dr := [−1, 1] × [−1,1] by changing variables through an isoparametric
transformation [13]. The discrete points and basis functions on element Dm can be obtained
by mapping the points and basis functions on the reference element Dr to Dm through the
isoparametric transformation. Since all computations are implemented on the reference
element, the basis functions on element Dm need not be formulated explicitly.

On the reference element, the discrete points and basis functions are the tensor product
of the discrete points and basis functions in each direction. Supposing −1 = s0 < s1 <

· · · < sp = 1 are the discrete points in [−1, 1], the basis functions in [−1,1] are p-th order
Lagrange interpolation polynomials through the points. That is

l j(s) = l(s)
λ j

s− s j
,

where

l(s) =
p
∏

j=0

(s− s j), λ j =
1

l ′(s j)
=

1
∏

j 6=k(s j − sk)
.

It is clear that, the basis functions in [−1,1], i.e., the Lagrange interpolation polynomials,
satisfy

l j(si) = δi, j .

It is known that for equally spaced points, the p-th order Lagrange interpolation in [−1,1]
is unstable as p increases, which is called the Runge phenomenon. The interpolation
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becomes stable if the interpolate points are moved to Gauss-Lobatto points, which con-
sist of the end-points ±1 and the extreme points of a p-th degree orthogonal polynomial
in [−1, 1], for example, the Legendre-Gauss-Lobatto ( LGL) points [32] which include the
extreme points of Legendre polynomials and ±1, and the Chebyshev-Gauss-Lobatto ( CGL)
points [33] which consist of the extreme points of Chebyshev polynomial and ±1. For CGL
points, there is an explicit formula:

si = cos((p− i)π/p), i = 0,1, . . . , p.

Moreover, the barycentric weights for CGL points are λ j = (−1) j , but the terms of j = 0
and j = p should be multiplied by 1/2. Thus we choose the discrete points based on CGL
points in this paper.

Once the points and basis functions in [−1,1] are determined, the discrete points and
basis functions on the reference element Dr can be obtained by applying the tensor product
of each direction. Cf. [30,35] for details.

3. The adaptive procedure

For the stochastic Galerkin method, there are two sources of truncation errors, i.e., the
errors from physical and stochastic approximations. More precisely, the square of overall
errors can be written as:

‖u(x,ξ)− uap(x,ξ)‖2L2(D)⊗L2
π(Γ )

=‖u(x,ξ)− uq(x,ξ) + uq(x,ξ)− uap(x,ξ)‖2L2(D)⊗L2
π(Γ )

where uq(x,ξ) =
∑q
|j|=0 uj(x)Φj(ξ). Denoting ej(x) = uj(x)− uap

j
(x), where uap

j
(x) :=

∫

Γ
uap(x,ξ)Φj(ξ)dξ =

∑Nx
i=1 uj i vi(x) (see (2.6)), we have

uq(x,ξ)− uap(x,ξ) =
q
∑

|j|=0

ej(x)Φj(ξ),

u(x,ξ)− uq(x,ξ) =
∞
∑

|j|=q+1

uj(x)Φj(ξ).

Since {Φj(ξ)} are orthonormal basis functions for stochastic approximation, the terms ej(x)Φj(ξ)
with |j| ≤ q and the terms uj(x)Φj with |j| ≥ q+ 1 are orthogonal. Thus we have

‖u(x,ξ)− uap(x,ξ)‖2L2(D)⊗L2
π(Γ )

=‖u(x,ξ)− uq(x,ξ)‖2L2(D)⊗L2
π(Γ )
+ ‖uq(x,ξ)− uap(x,ξ)‖2L2(D)⊗L2

π(Γ )

=‖
∞
∑

|j|=q+1

uj(x)Φj(ξ)‖2L2(D)⊗L2
π(Γ )
+ ‖

q
∑

|j|=0

ej(x)Φj(ξ)‖2L2(D)⊗L2
π(Γ )

=
∞
∑

|j|=q+1

‖uj(x)‖2L2(D) +
q
∑

|j|=0

‖ej(x)‖2L2(D).

(3.1)
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In (3.1), the term
∑∞
|j|=q+1 ‖uj(x)‖

2
L2(D) is the square of the stochastic approximation error,

and the term
∑q
|j|=0 ‖ej(x)‖

2
L2(D) is the square of the physical approximation error.

Next, the over all relative error is defined as

err := ‖u(x,ξ)− uap(x,ξ)‖L2(D)⊗L2
π(Γ )

�

‖u(x,ξ)‖L2(D)⊗L2
π(Γ )

. (3.2)

That is
err=

�

err2
stoch + err

2
phy

�1/2
, (3.3)

where

err2
phy :=

q
∑

|j|=0

‖ej(x)‖2L2(D)

�

‖u(x,ξ)‖2L2(D)⊗L2
π(Γ )

, (3.4)

err2
stoch :=

∞
∑

|j|=q+1

‖uj(x)‖2L2(D)

�

‖u(x,ξ)‖2L2(D)⊗L2
π(Γ )

. (3.5)

Since
‖uq(x,ξ)‖2L2(D)⊗L2

π(Γ )
≤ ‖u(x,ξ)‖2L2(D)⊗L2

π(Γ )
,

we have

err2
phy ≤

q
∑

|j|=0

‖ej(x)‖2L2(D)

�

‖uq(x,ξ)‖2L2(D)⊗L2
π(Γ )

,

For convenience, we define a symbol ®: for a, b ∈ R, a ® b if and only if a ≤ C b where
C is generic constant independent of a and b. As discussed in [39], if the exact solution
u(x,ξ) of (2.5) is analytic with respect to ξ, moduli of gPC coefficients decay exponentially
as the gPC order increases. The rate of exponential decay depends on the regularity of
the solution with respect to ξ. Tang and Zhou [43] investigate a stochastic collocation
method for scalar hyperbolic equations with a random wave speed and show that the rate
of convergence depends on the regularity of solutions. We note that the mean of u(x,ξ)
is u0(x) and the variance is

∑

|j|>0u2
j(x). In this work, we restrict our attention to the

situation that the standard deviation of u(x,ξ) is not much larger than the expectation,
and we then assume

‖uj‖2L2(D) ® ‖ui‖
2
L2(D) for |j|> 0 and |i|= 0.

This assumption is true when the variance of κ(x,ξ) is small or when the solution of (2.5)
changes modestly with respect to ξ. Based on the above assumption, we further assume

‖ej‖L2(D) ® ‖ei‖L2(D) for |j|> 0 and |i|= 0. (3.6)

Note that ‖uq(x,ξ)‖2L2(D)⊗L2
π(Γ )
=
∑q
|j|=0 ‖uj‖

2
L2(D) ≥ ‖u0(x)‖2L2(D), and we have an upper

bound of the error for physical approximation:

errphy ® ‖e0(x)‖L2(D)
�

‖u0(x)‖L2(D). (3.7)
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For spectral element method, there are some strategies to estimate the right hand side
of (3.7) [25,26]. In this paper, we estimate the right hand side of (3.7) as following. First,
the approximate solution uap

0 (x) is rewritten as

uap
0 (x) =

ND
∑

m=1

uap
0,m(Fm(s, t)), uap

0,m(x) = uap
0 (x)|Dm

,

where (x1, x2) = Fm(s, t) is the isoparametric transformation from the reference element
Dr to Dm, m= 1, . . . , ND.

In the following, we derive an error indicator of each local approximation solution
uap
0,m through its Chebyshev expansion (note that the local solution is obtained through

Lagrange polynomial basis as discussed in Section 2.4). On each element Dm, the local
solution uap

0,m(Fm(s, t)) can be expanded as the Chebyshev series,

uap
0,m(s, t) := uap

0,m(Fm(s, t)) =
p
∑

i=0

p
∑

j=0

am
i j Ti(s)T j(t), (3.8)

where {Ti(·)}
p
i=0 are Chebyshev polynomials and {am

i j}
p
i, j=0 are coefficients of the Chebyshev

expansion of uap
0,m. In [34], it is proven that if for some h > 0, uap

0,m(s, t) is analytic for all
(s, t) ∈ {(s̃, t̃ )| (s̃, t̃ ) ∈ C2, and s̃2 + t̃2 ∈ N2,h2} where N2,h2 := {s̃| s̃ ∈ C, and |s̃|+ |s̃ − 2| <
2 + 2h2}, then for ∀ ε > 0, we have |am

i j | = O((ρ − ε)−
p

i2+ j2), where ρ = h +
p

1+ h2.
This implies that the moduli of the coefficients in (3.8) decrease exponentially if the local
solution uap

0,m(Fm(s, t)) is analytic. Thus we use

errphyest :=

� ND
∑

m=1

η2
m

�1/2
À

‖uap
0 (x)‖L2(D), (3.9)

to estimate ‖e0(x)‖L2(D)
�

‖u0(x)‖L2(D), where

ηm = ‖
∑

max(i, j)=p

am
i j Ti(s)T j(t)‖L2(Dm).

Supposing the tolerance for the physical approximation is denoted by ε, the elements with

ηm > ε‖u
ap
0 (x)‖L2(D)

À

p

ND

need to be split. Note that when η1 = . . .= ηm = ε‖u
ap
0 (x)‖L2(D)

À

p

ND, errphyest = ε.
Since the contribution of different directions may not be the same, there are three ways

to split the elements, and Figure 1 gives the sketch of them. If x i (i = 1,2) contributes the
main error, the element is only split in x i direction. If the contributions of two directions
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Local refinement
in x1 direction

Local refinement
in both directions

Local refinement
in x2 direction

Figure 1: Local refinements for an element.

are nearly the same, the element is split in both directions. More precisely, for the m-th
element, the following error indicators are defined:

βm1 = ‖
p
∑

j=0

am
p j Tp(s)T j(t)‖L2(Dm), (3.10)

βm2 = ‖
p
∑

i=0

am
ipTi(s)Tp(t)‖L2(Dm). (3.11)

If βmi > 2/3 max(βm1,βm2), the m-th element is split in x i direction evenly.

To summarize, the physical mesh can be refined by Algorithm 3.1.

Algorithm 3.1 The mesh refinement scheme
Set the tolerance ε, and initialize the mesh T .
Compute the numerical solution uap(x,ξ) in (2.6).

Compute {ηm}
ND
m=1, {βmi}

ND
m=1 and errphyest in (3.9)–(3.11).

if errphyest > ε then
for m= 1 : ND do

if ηm > ε‖u
ap
0 (x)‖L2

À

p

ND and βmi > 2/3max(βm1,βm2) then
Split the elements along x i direction evenly.

end if
end for

end if
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On the other hand, for the stochastic approximation, we have

errstoch ≤

 

∞
∑

|j|=q+1

‖uj(x)‖2L2(D)

�

∞
∑

|j|=1

‖uj(x)‖2L2(D)

!1/2

. (3.12)

Note that the right hand side of (3.12) is exactly the relative error of variance function for
gPC expansion with total degree q. Following [36], we estimate this error as

errstochest =

 

∑

|j|=q

‖uap
j
(x)‖2L2(D)

�

q
∑

|j|=1

‖uap
j
(x)‖2L2(D)

!1/2

. (3.13)

When errstochest is greater than the tolerance for the physical approximation, we increase
the degree q.

Recalling (3.3), the over all error is

err=
�

err2
stoch + err

2
phy

�1/2
,

and an indicator for the total error can be defined as

errest := (err2
stochest + err

2
phyest)

1/2, (3.14)

where errstochest and errphyest are defined in (3.9) and (3.13).
Combining the above adaptive procedures for both stochastic and physical approxima-

tions, our overall adaptive hybrid spectral strategy processes as follows. First, for a given
overall tolerance TOL, we set the initial gPC order to be one (i.e., q = 1), and use a very
coarse grid to initially partition the physical domain. Then, we compute the numerical
approximation uap(x,ξ) (see (2.6)), and the indicators errphyest, errstochest and errest by
using (3.9) and (3.13)–(3.14). If the error indicator has a large value, i.e., errest > TOL,
the solution is refined as follows: if the stochastic approximation error is dominant, i.e.,
errstochest > errphyest, the the gPC order q needs to be updated by setting q = q+ 1; if the
physical approximation error is important, i.e., errstochest ≤ errphyest, the physical mesh
T needs to be refined by Algorithm 3.1. This procedure is repeated until errest ≤ TOL.
Algorithm 3.2 gives details of this adaptive hybrid spectral method.

4. Numerical studies

4.1. Test problem 1 (square domain)

In this test problem, we set D = [−1,1]× [−1,1], ∂ DD = ∂ D, ∂ DR = ;, and the source
term in (2.1) is specified as

f (x) = 2(0.5− x2
1 − x2

2),

where x= [x1, x2]T .
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Algorithm 3.2 The adaptive hybrid spectral method (AHSM)
Set the tolerance TOL, let q = 1 and initialize the mesh T .
Compute the numerical solution uap(x,ξ) in (2.6).
Compute errphyest, errstochest and errest by (3.9) and (3.13)–(3.14).
while errest > TOL do

if errstochest > errphyest then
Increase the gPC order, i.e., set q = q+ 1.

else
Set ε= errstochest, and refine the mesh T using Algorithm 3.1.

end if
Compute the numerical solution uap(x,ξ) in (2.6).
Compute errphyest, errstochest and errest by (3.9) and (3.13)–(3.14).

end while

The refractive index in this test problem is set to a truncated Karhunen–Loève (KL)
expansion [11,18] of a random field with mean function κ0(x), standard deviation σ and
covariance function

Cov(x,y) = σ2 exp
�

−
|x1 − y1|

c
−
|x2 − y2|

c

�

,

where x = [x1, x2]T , y = [y1, y2]T and c is the correlation length. The KL expansion is
expressed as

κ(x,ξ) = κ0(x) +
n
∑

i=1

κi(x)ξi = κ0(x) +
n
∑

i=1

Æ

λici(x)ξi ,

where {λi , ci(x)}ni=1 are eigenpairs of the integral operator associated with Cov(x,y), n is
the number of KL modes retained, and {ξi}ni=1 are uncorrelated random variables. When
considering Gaussian random fields, the random variables associated with the KL expansion
are independent standard normal random variables. However, since the range of Gaussian
random fields is unbounded and includes zero, our model problem (2.1)–(2.3) is not well
defined if we set κ(x,ξ) to a Gaussian field. To ensure the well-posedness of our problem,
we follow the setting in [12], where the random field is defined through the covariance
kernel and the independent uniform random variables with range [−1, 1]. In addition, we
set κ0(x) = 4, σ = 0.2, c = 0.625 and n= 4.

To assess the accuracy of the approximation (2.6) based on gPC expansion and the
spectral element method, we consider the relative errors of mean and variance functions,
which are defined through

errm :=
‖E
�

uap

�

−E
�

uref
�

‖L2(D)

‖E
�

uref
�

‖L2(D)
,

errv :=
‖V
�

uap

�

−V
�

uref
�

‖L2(D)

‖V
�

uref
�

‖L2(D)
,
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where uref is a reference solution.
In this test problem, the reference solution is generated using a non-adaptive hybrid

spectral method (NAHSM), where the physical domain is discretized by uniform spectral
elements with Lagrange polynomial order p = 6 and the stochastic domain is discretized by
gPC with order q = 6. Moreover, the degrees of freedom of physical domain discretization
are Nx = 66049.

To compare the efficiency of the adaptive hybrid spectral method (AHSM) as in Algo-
rithm 3.2 and the stochastic Galerkin finite element method (SGFEM) where the stochastic
domain is discretized by gPC and the physical domain is discretized by low order finite ele-
ments (see [31]), we consider the relative errors of mean and variance function estimates
with respect to the overall degrees of freedom d.o.f= NxNξ. For AHSM, we set the order
of Lagrange interpolation polynomials to p = 6 on each physical element, and test seven
different values of the tolerance TOL in Algorithm 3.2 (TOL= 10−1, . . . , 10−7). For SGFEM,
the physical domain is discretized using the first order rectangular elements, and the gPC
order is set to the highest order determined by AHSM, i.e., q = 5. To make a further compar-
ison, we also show the results of a non-adaptive hybrid spectral method (NAHSM), where
the physical domain is discretized by uniform spectral elements with Lagrange polynomial
order p = 6 and the stochastic domain is discretized by gPC with order q = 5.

10
4

10
5

10
6

d.o.f

10
-8

10
-6

10
-4

10
-2

R
e
la

ti
v
e
 e

rr
o
rs

SGFEM

NAHSM

AHSM

10
4

10
5

10
6

d.o.f

10
-8

10
-6

10
-4

10
-2

R
e
la

ti
v
e
 e

rr
o
rs

SGFEM

NAHSM

AHSM

Figure 2: Comparison of the errors of mean (left) and variance (right) functions w.r.t. the overall degrees
of freedom.

Figure 2 shows the relative errors of mean (left) and variance (right) functions with
respect to the overall degrees of freedom (d.o.f = NxNξ). It is clear that AHSM requires
less d.o.f than SGFEM and NAHSM to achieve the same level of accuracy for the mean
estimates. For the variance estimates, AHSM and NAHSM require similar d.o.f to achieve
accuracies with error smaller than 10−4. It should be noted that, for all our test problems,
the magnitudes of the variance estimates are much smaller than the magnitudes of the mean
estimates, and therefore the contribution of errors in mean estimates is dominant in the
overall error defined in (3.2). This explains why the variance error of AHSM can be larger
than that of NAHSM in Figure 2—Algorithm 3.2 conducts adaptively based on the error
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indicator for the total error, which may only lead to small errors in its main contribution
(the mean error in this test problem). In addition, errors of both AHSM and NAHSM are
small compared with SGFEM.
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Figure 3: Comparison of the errors of mean (left) and variance (right) functions w.r.t. computation
times.

Figure 3 shows errors with respect to the wall clock time for this test problem. The
linear system (2.7) is solved by the biconjugate gradient stabilized method (BiCGSTAB)
with the mean-based preconditioner [31] in all our test problems, and the computation
times refer to the times (wall clock time) spent in BiCGSTAB iterations. It is clear that for a
given computation time, AHSM has the smallest error in mean estimates. For the variance
estimates, when the computation time is smaller than one, the error of AHSM is smaller
than the errors of SGFEM and NAHSM, while the errors of AHSM and SGFEM becomes
closer when the computation time becomes larger. In addition, for a given computation
time, errors of AHSM and NAHSM in both mean and variance estimates are smaller than
the errors of SGFEM.

We also compare the indicators of the total error (3.14) with the errors of mean and
variance functions in Figure 4(a) for AHSM. It can be seen that values of the indicator
are consistent with the errors of mean and variance functions, and their magnitudes are
at the same level. The physical error errphy and its indicator errphyest, and the stochas-
tic error errstoch and its indicator errstochest are compared in Figure 4(b). Note that the
physical and stochastic errors are defined in (3.2)–(3.5) and computed via replacing the
solution u(x,ξ) by the reference solution uref(x,ξ). Form the figure, we can see that the
physical and stochastic errors are both consistent with their indicators.
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Figure 4: Comparison of the indicators and the errors of mean and variance functions (left), and
comparison of the indicators and the physical and stochastic approximation errors (right).

4.2. Test problem 2 (L-shaped domain)

In this problem, the refractive index is set to

κ(x,ξ) = 1+ 0.3 ·
4
∑

k=1

cos(kx) sin(k y)
k2

ξk,

and the force term is the same as that in test problem 1. The physical domain is D =
[−1,1]×[−1,1]/(−1, 0)×(−1, 0). The boundary conditions are set to ∂ DD = {1}×[−1,1]
and ∂ DR = ∂ D/∂ DD.
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Figure 5: Comparison of the errors of mean (left) and variance (right) functions w.r.t. the overall degrees
of freedom.



An adaptive hybrid spectral method for stochastic Helmholtz problems 17

In this test problem, the reference solution is generated using NAHSM, where the phys-
ical domain is discretized by uniform spectral elements with Lagrange polynomial order
p = 6 and the stochastic domain is discretized by gPC with order q = 5. Moreover, the
degrees of freedom of physical domain discretization are Nx = 111361.

To compare the efficiency of AHSM, NAHSM and SGFEM, we show the relative errors
of mean and variance functions with respect to the overall degrees of freedom (d.o.f =
NxNξ) in Figure 5. For AHSM, we set p = 6 on each element, and test five different values
of the tolerance TOL in Algorithm 3.2 (TOL = 10−2, . . . , 10−6). For NAHSM, the physical
domain is discretized by uniform spectral elements with Lagrange interpolation polynomial
order p = 6 and the stochastic domain is discretized by gPC with order q = 4 (the highest
order determined by AHSM for this test problem). For SGFEM, the physical space is dis-
cretized by the first order rectangular elements, and the stochastic domain is discretized by
gPC with order q = 4. From Figure 5, it is clear that AHSM requires less d.o.f than SGFEM
and NAHSM to achieve a same level of accuracy for both mean and variance estimates.
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Figure 6: Comparison of the errors of mean (left) and variance (right) functions w.r.t. computation
times.

Figure 6 shows errors with respect to computation times for this test problem. It is clear
that to achieve an accuracy in mean and variance estimates, AHSM requires less computa-
tion times than NAHSM and SGFEM.

Values of the indicator for the total error (3.14) are compared with the errors of mean
and variance functions in Figure 7(a) for this test problem. It can be see again that values of
the indicator are consistent with the errors of mean and variance functions, and they have
the same order of magnitude. We also compare the physical error errphy, the stochastic
error errstoch and their indicators in Figure 4(b). Form the figure, we can see that the
physical and stochastic errors are both consistent with their indicators.
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Figure 7: Comparison of the indicators and the errors of mean and variance functions (left), and
comparison of the indicators and the physical and stochastic approximation errors (right).

5. Conclusions

Conducting adaptivity is a fundamental concept of efficient numerical methods for solv-
ing stochastic PDEs. With a focus on the stochastic Helmholtz equations, our main conclu-
sion is the adaptive hybrid spectral method proposed in this work provides an efficient
systematic strategy for solving practical acoustic and optical problems. Our numerical re-
sults make it clear that our innovative error indicators provide effective estimates for both
stochastic and physical approximation errors, and this new adaptive method requires less
overall degrees of freedom than standard adaptive stochastic Galerkin finite element meth-
ods to achieve a same level of accuracy. The main limitation of this new method is that
its associated linear system is denser than that of the stochastic Galerkin finite element
methods, as it is a spectral method for both stochastic and physical approximations. How-
ever, since the matrices associate with our method is still blockwise sparse, efficient solvers
for stochastic Galerkin finite elements, e.g., block-diagonal preconditioning schemes, can
be directly applied for these matrices. Specialized linear solvers for our adaptive hybrid
spectral method will be reported in a future paper.
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